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ABSTRACT. The thermal fluxes on the inner surface of a tube,
determined by the temperature distribution on its surfaces on
the basis of a unidimensional temperature field, is compared
for the purpose of evaluating the possible magnitude of error
involved in the generalized gradient method using the
analytical solution of Dirichlet's problem of the temperature
field in a wall that transfers heat.

In the gradient method for investigating heat transfer, the thermal flux
is determined bn the basis of the temperature gradient in the wall on the heat
transfer surface, which is found, in turn, on the basis of the analytical
solution of the Dirichlet problem of the temperature field in a wall that
participates in heat transfer. For finding the analytical functions that
express the temperature gradient on the heat transfer surface through the
functions that reflect the temperature distribution on the boundaries of the
wall, the thermal conductivity coefficient is assumed to be independent of
temperature. The error associated with this simplification depends on the
magnitude of the thermal stress, and when the heat transfer process is of low
inténsity,.it-can be disregarded. At the same time, in various branches of
technology, particularly in rocketry, the importance of high-rate heat exchange
processes 1is continuously increésing. In investigations by the gradient method
of high—rate heat transfer proceéses, which occur in chemically reacting gas
flows, in boiling liquids, and under other conditions, the prerequisite that
‘the thermal conductivity coefficient be independent of temperature can result

in large errors during processing of the experimental results.

. In order to evaluate the possible magnitude of the error we will compare

the thermal fluxes on the internal surface of a tube, found by the temperature

*Numbers in the margin indicate pagination in the foreign text.
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dlstrlbutlon on its surfaces on the basis of a unidimensional temperature
field. The solution of the differential equation of thermal conductivity with

consideration of the linear dependence of the thermal conductivity coefficient

on temperature

A=2y(1 + bf) .

produces the following expression for thermal load per unit length of the tube

b .
5 (b + L) (4 — 8),

whete d1 and d2 are the internal and external diameters of the tube,

t and t, are the temperatures of the surfaces.

By comparing this expression with the formuléffornthe thermal load qé
found with the assumption that the thermal conduct1v1ty coeff1c1ent is

independent of temperature, we obtain [1]:
4 _g’_',__}_ 14 bty R ‘
@ 2 + lJ-bt) ( /' (3

The graph shows q*/qa as a function of the thermal load q in terms of the
area of the cylindrical surface of a tube for the average diameter, when the

tube is made of EI 607 steel with a

. wall thickness of 10 mm and internal
;;%:' ‘ surface temperature of 100°C. The

It : / temperature of the outer surface under

14 // the maximum thermal stress reached

{3 : /// ‘ 800°C. Information concerning the

12 : ,/’z thermal conductivity coefficient of the

o ‘ ,,/’/, : steel was taken from [2]. .

4 ' -
10l — - — 2 The figure shows that when
st 10 s’ 10° g" wim

q. > 5'104'w/m2, the processing of the
experimental data without consideration

of the dependence of A on temperature



for-the examined conditions can result in considerable errors. At the same
~--1:iin‘e,-for instance, in chambers and nozzles of rocket engines, the thermal

stresses can exceed substantially 106 w/mz.

The use of the functions for unidimensional temperature fields in the
gradient method for analyzing heat transfer enables us to solve only a narrow
circle of problems. The possibilities of the method are greatly expanded by
using analytical solutions for two-dimensional temperature fields. For a tube
in axial flow and for transverse flow around the tube,Aand also for flow around
a curvilinear wall, such solutions are examined in [3]-[5].in the case of

arbitrary temperature distribution through the cross section of the wall.

For 1liquid flow in a tube, the average heat transfer coefficient through

length z is determined by the formula [3]

.l‘ 3 N Lt ‘
& == - g (z), i .
Atav% o : (4)
where
r
ef) o | /9L />
) 3 <6r ’/,z,‘ az. (5)

and Al is the thermal conductivity coefficient on the inner surface of the tube. /107

The function £(z) is found on the basis of the solution of the differential
equation of thermal conductivity found with the assumption that the thermal
conductivity coefficient is independent of'temperature,

a1 et o
—+—-—+—===0 (6)

© o or2 r or 0z2

for boundary conditions

r=r, t=g9(2),

r=r, f=4(2),. )
z=0 {=8(r),
z= t=_C(r).



The solution has the form

@ =Y [ (2 ) — Ak (22 )](cos T 1)
© a=l : ' ) .

- S ®)
T [Cn Sh ?nz + Dn (Ch gn‘.z_ _— 1)] Vl (pnrl)}'

‘Here I1 and Kl are modified Bessel functions of the first order; An’ Bﬁ, Cn
and Dn are.constants found from the boundary condition; Vl(Bnrl)_is a function;

'Bn are the eigenvalues of the problem.

_ The differential equation of thermal conductivity in the case of arbitrary
dependence of the thermal conductivity coefficient on temperature can be

_represented in the Cartesian coordinate system as follows:
A TR 6 Fot ENAEA
== (A= —( % —(A—)=0.
. dx( ax>+ 5y< 6y>+dz( z) =0 9)

Using auxiliary function [6]

o,

| 1

G () = le'z(;) at (10
o

equation (9) can be transformed to

G | #G., ¥G .,
‘ ax% [ 6y2 ) 1622.*0. (11)

. For the two-dimensional in cylindrical coordinates it acquires the same
form as equation (6): '

. +

or* ~ r or = o =0. (12)

¥G [ 1e6 , Fa
Ll ¥

- The boundary conditions for the problem are



=1 G=¢%(2),
=rn G=¢"(2),
z=0 G=£t(),
z=1 G=U().

(13)

Here ¢*, Y*, &%, C* are functions that characterize the distribution of

G on the investigated wall, found with consideration of (7) and (10).

From (10) we obtain

MAG(r, 2)=2(t)dt(r, 2).
Consequently

oG bt
A — = A () —
o ()dr

and

l( “z)( .

For the conditions under examination

2 [ <a—> d
0 .

av

‘a:._.

With consideration of (16)

e (2),

where

e 5 Cor >,_,.

The function €*(z) is determined by the solution of equation (12) for

(15)

(16)

an

(18)

(19)

boundary conditions (13). Since (12) and (13) are of the same form as (6) and



(7), €*(z) and €(z) are written analogously: 4 .

.;*(z)=§gl{[BZK —-”—“Jr,) Ar 1(-—— r1>J<co§&z~l>~

[CﬂShg Z+ Dﬂ(Chxn:'_' 1)]V1 (pnrl)};

B TR L .

(20)

The values V1 (Bnrl) and Bn are found in the same manner as for formula
(8) [31. |
We will find the coefficients that go into equation (20), assuming that

the thermal conductivity coefficient depends linearly on temperature:
A=DX, -+ b (21)

The function G(t) with consideration of (21) is rewritten in the form

_G(t);%t—k—g—f“’. E (22)
Consequently . '

g* (z)=§j~«p(z> + —;—f—lcp? @),

«p*(é)7=l°- np(z>+—f’-*—¢‘-’(z>, |

()= E<>' ‘?() (23)

vﬁ*(r)— C(f)—L

r2 (,.)

We calculate the coefficients M; and N;‘l, upon which depend A;} and BI’; [3]:
1
M,,—— j o* (z )sin%zdz:
-0
1

10—5 v (2) sm———i zdz +*—~S<P (=

~[.o
(]
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Theh,rwith consideration of [3], we obtain

jim o )i ()
b () () e ()
e ()~ ()

R () (T n ()

For C* and D*, considering (22), we obtain

: ’:‘ A232 Jg.(;é'n’é) -
Chm Mt Src(r)[ +--——E(r]V(§r)dr
25 Bar) = S5 Gardl ) )|Vl
A . D'; E,—Clchg,l
SR shpy 7
where
. 232 12 (3, 3 i
E,,,= =23 o( l‘2) 51_\,(’_)[7\0 + ——C(r)]V (@nr)dr.

2 [J3 Bart) — Jg Bar2)l

g

The analogous expressions can be found for other types of walls that

participate in heat transfer.
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